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Roadmap

Formulation of GRT

— Now with time/path dependence as well
— Going from time-domain to absorption by a uniform gas

Motivation of GRT ...

— as a resource for integration over spatial variability
— as a resource for integration over spectral variability

Application to multi-angle observations of
optically thin aerosol layers with interstitial
(gaseous) absorption:

— Spatially variable scene, quasi-monochromatic sensor;
— Spatially uniform scene, realistic spectral integration;
— Both spatial and spectral variability.

Summary & Outlook © 2017 California Institute of Technology.
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Formulation of standard RT in plane-parallel media

sinks sources
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Formulation of standard RT in plane-parallel media

sinks sources
A A
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Boundaryl/initial conditions:
I(ct,0,2) =0 for p >0, and I(ct, H,2) =0 for p < 0;ct>0

Source term: q(ct, z,2) = 2Fpd(ct)d(z)0(2 — Qo)

Source function: S(ct,z,Q) = o /p(Q - Q) (ct, z, Q')A

—

Integro-differential formulation: Complete!

NB. In this study: o= 0,+ 0, = ©y0, + [(1-0y)0,+0,]
... lateron: o, k;



Formulation of standard RT in plane-parallel media

Integral formulation:
Source term: q(ct,z,2) = 2Fod(ct)d(2)6(2 — Qo)

Source function: S(ct,z,2) = o /p(Q - (ct, z,Q2")dY

“Formal” solution: /
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Formulation of standard RT in plane-parallel media

“Ancillary”
integral formulation:

Source term: q(ct,z,82) = 2Fp6(ct)6(2)d(2 — o)
Source function:  S(ct,z,Q) / p(2- Q) (ct, z, Q')A

Formal solution: I
II( ) It IS 18 + dl(et', 2, e T8 (et — ct') — =2 ) Edet’ for p> 0
ct,z,§2) = ) e , ' o
IS + (et 2, Qe Wd((ct—ct)—ﬁ)%dct for yu < 0




Formulation of generalized RT in plane-parallel media

Equivalently, when |7 (7)) =T (t)=¢ (Beer’s law):
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Formulation of generalized RT in plane-parallel media

Equivalently, when |7 (7) =T (r)=¢* (Beer’s law):

ct H
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Formulation of generalized RT in plane-parallel media

Equivalently, when |7 (7) =T (r)=¢* (Beer’s law):

ct H

S(ct,z,ﬂ):///IC(ct,z,Q;ct',z',Q')S(ct',z',Q’)dQ’dz'dct'+Q5(ct,z,Q)
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... and directly transmitted back to TOA (z = H).




Formulation of generalized RT in plane-parallel media

[ T=(1+2)"
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Parametric GRT model: <

—

Standard RT model is recovered at ¢ >
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Formulation of generalized RT in plane-parallel media

" Ty(r) = (1+ 1)_0
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Standard RT model is recovered at g > «

Parametric GRT model: <
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Formulation of generalized RT in plane-parallel media
[ ne= (1)

. —(a+1)

Ta('r)’ = (1 + %)

Standard RT model is recovered at g > «

Parametric GRT model: <

... the only case where 7T..(7) = ldT../d (1) = exp(-7).

But, why mess with the propagation part

of the transport kernel in the first place?




Motivation of generalized RT in plane-parallel media, 1:

« The turbulent nature of clouds ensures long-range correlations in
fluctuating extinction field: structure functions ~r?#, with H= 1/3 > 0.

* Hence scale-independence of extinction averaged over a segment of fixed
length s; just need to know the stats of (s) at one representative value of s.
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H. W. Barker, B. A. Wielicki, and L. Parker, A parameterization for computing grid-
averaged solar fluxes for inhomogeneous marine boundary layer clouds - Part 2,
Validation using satellite data, J. Atmos. Sci. 53, 2304-2316 (1996).



Motivation of generalized RT in plane-parallel media, 1:
* The turbulent nature of clouds ensures long-range correlations in
fluctuating extinction field: structure functions ~r?#, with H= 1/3 > 0.

* Hence scale-independence of extinction averaged over a segment of fixed
length s; just need to know the stats of (s) at one representative value of s.

= - 1 a-1 o =at(s)/7(s)
p(t(s);7(s),a) F(a)(r(s)) T(s) :

1
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Therfore T, (s)=e™" = f e " p(T(s);T(s),a)dT(s) =
0

a is mean?/variance



Motivation of generalized RT in plane-parallel media, 2:
H,Oat 0.7 to 5 umin

. Ind+ (k> V) the stratosphere: » 1
ey — V2u T‘(u) — - NEY
12 orders-of- / (] + /)’Ll)’
1.8 ————————— magnitude variation! — |
[ correlated-k model | Where
14 f :

y=1/V?

1.2
1 +

o)
-

line-by-line | p= 4%

0.8 |
06 1 benchmark 1
04 p T(u— 2
T, (U) -=---- 2 <k >

0.2 Ty (U) ceeeene new model ™. 1 Vo= 5 —1

0 \ . . . e <’<>

0.01 0.1 1 10 100 1000

u

A. J. Conley and W. D. Collins, Extension of the weak-line approximation and
application to correlated-k methods, JQSRT 112, 1525-1532 (2011).



How to combine particle scattering and gaseous
absorption in GRT?

Use equivalency of time-dependent RT and
absorption by a uniform gas:

0.9

A

I)(z,2) = 1(2,;ky) = /exp(—k,\ ct)I(ct, z, 2)dct

0

In standard 1D RTE (integral or integro-differential forms):
o= 0,+ 0, = 0,0, + (1-wy)0, 2 0,= (1-my)0, + k,
... a local extension

In generalized 1D RTE (integral form only!):
T(7) and |T'(7)| to be multiplied by: exp[—k,(z—")/u]

... a hon-local extension



Subpixel spatially heterogeneous aerosol scattering
in an absorbing gas: Monochromatic estimation

Noticeable impacts in BRF ... all but gone in DOAS ratio:
(at small enough a) BRF; . .pand/BRF continuum

BRF,/ (7XPF) 2o DOAS ratio
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Subpixel spatially homogeneous aerosol scattering
in an absorbing gas: Broadband estimation

N, = 29,620 single-scattering N, = 6 or 12 single-scattering
BRF evaluations in line-by-line BRF evaluations in correlated-k

benchmark computations. or GRT estimations: % error
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Summary & Outlook

* Rigorous extension of GRT to combined
particle scattering and gaseous absorption

* Analytical solution in GRT for single-
scattering, applicable to thin aerosol layers

* Application of GRT to fast-but-accurate
spectral integration, including scattering

* To do: Incorporate into existing (Markov-
chain) GRT multiple scattering code

Detalls:

A.B. Davis, F. Xu, D.J. Diner, Generalized radiative transfer theory for scattering by
particles in an absorbing gas: Addressing both spatial and spectral integration in multi-
angle remote sensing of optically thin aerosol layers, JQSRT 205, 148-162 (2018).

A.B. Davis, F. Xu, D.J. Diner, Addendum to “[the above]’, JQSRT 206, 251-253 (2018).




